Monday, April 20, 2009

Wheat

Wheat originated in Southwest Asia in the area known as the Fertile crescent. The genetic relationships between wild and domesticated populations of both einkorn and emmer wheat indicate that the most likely site of domestication is near Diyarbakır in Turkey. Wild wheats were domesticated as part of the origins of agriculture in the Fertile Crescent. Cultivation and repeated harvesting and sowing of the grains of wild grasses led to the domestication of wheat through selection of mutant forms with tough ears that remained intact during harvesting, larger grains, and a tendency for the spikelets to stay on the stalk until harvested. Because of the loss of seed dispersal mechanisms, domesticated wheats have limited capacity to propagate in the wild.

There are many botanical classification systems used for wheat species, discussed in a separate article on Wheat taxonomy. The name of a wheat species from one information source may not be the name of a wheat species in another. Within a species, wheat cultivars are further classified by wheat breeders and farmers in terms of growing season, such as winter wheat vs. spring wheat, by gluten content, such as hard wheat (high protein content) vs. soft wheat (high starch content), or by grain color (red, white or amber).

Gluten, a protein found in wheat (and other Triticeae), cannot be tolerated by people with celiac disease. Much of the carbohydrate fraction of wheat is starch. Wheat starch is an important commercial product of wheat, but second in economic value to wheat gluten. The principal parts of wheat flour are gluten and starch. These can be separated in a kind of home experiment, by mixing flour and water to form a small ball of dough, and kneading it gently while rinsing it in a bowl of water. The starch falls out of the dough and sinks to the bottom of the bowl, leaving behind a ball of gluten.

While winter wheat lies dormant during a winter freeze, wheat normally requires between 110 and 130 days between planting and harvest, depending upon climate, seed type, and soil conditions. Crop management decisions require the knowledge of stage of development of the crop. In particular, spring fertilizer applications, herbicides, fungicides, growth regulators are typically applied at specific stages of plant development.

No comments:

Post a Comment