A microwave oven, or a microwave, is a kitchen appliance that cooks or heats food by dielectric heating. This is accomplished by using microwave radiation to heat water and other polarized molecules within the food. This excitation is fairly uniform, leading to food being adequately heated throughout (except in thick objects), a feature not seen in any other heating technique. Microwave ovens heat food quickly, efficiently, and safely, but do not brown or bake food in the way conventional ovens do. This makes them unsuitable for cooking certain foods, or to achieve certain effects.
Cooking food with microwaves was discovered accidentally in the 1940s. Percy Spencer, a self-taught engineer, was building magnetrons for radar sets with the company Raytheon. He was working on an active radar set when he noticed that a peanut chocolate bar he had in his pocket started to melt. The radar had melted his candy bar with microwaves. The first food to be deliberately cooked with Spencer's microwave was popcorn, and the second was an egg, which exploded in the face of one of the experimenters. To verify his theory, Spencer created a high density electromagnetic field by feeding microwave power into a metal box from which it had no way to escape. When food was placed in the box with the microwave energy, the temperature of the food rose rapidly.
Microwave heating is more efficient on liquid water than on fats and sugars (which have less molecular dipole moment), and also more efficient than on frozen water (where the molecules are not free to rotate). Microwave heating is sometimes explained as a resonance of water molecules, but this is incorrect: such resonance only occurs in water vapor at much higher frequencies, at about 20 GHz. Moreover, large industrial/commercial microwave ovens operating at the common large industrial-oven microwave heating frequency of 915 MHz (0.915 GHz), also heat water and food perfectly well.
Most microwave ovens allow the user to choose between several power levels, including one or more defrosting levels. In most ovens, however, there is no change in the intensity of the microwave radiation; instead, the magnetron is turned on and off in duty cycles of several seconds at a time. This can actually be heard (a change in the humming sound from the oven), or observed when microwaving airy foods which may inflate during heating phases, and deflate when the magnetron is turned off. For such ovens, the magnetron is driven by a linear transformer which can only feasibly be switched completely on or off. Newer models have inverter power supplies which use pulse width modulation to provide truly continuous low-power microwave heating.
No comments:
Post a Comment