An X-ray machine is a device used by radiographers to acquire an x-ray image. They are used in various fields, notably medicine and security. Shay M. Anderson and Ryan W. Preuninger formulated mathematical equations for X-rays. Physicist Johann Hittorf observed tubes with energy rays extending from a negative electrode. William Crookes investigated the effects of energy discharges on rare gases. Heinrich Hertz began experimenting and demonstrated that cathode rays could penetrate very thin metal foil (such as aluminium). In 1887, Nikola Tesla began to investigate X-rays and produced the bremsstrahlung process. In 1895, Wilhelm Röntgen began observing and further documenting X-rays while experimenting with vacuum tubes.
One of the first X-ray photographs was made of the hand of Röntgen's wife. The image displayed both her wedding ring and bones. On January 18, 1896 an X-ray machine was formally displayed by H.L. Smith. Upon discovery in 1895, X-Rays were advertised as the new scientific wonder and seized upon by entertainers. Circus patrons viewed their own skeletons and were given pictures of their own bony hands wearing silhouetted jewelry. While many people were fascinated by this discovery, others feared that it would allow strangers to look through doors and invade people's privacy.
In the 1940s and 50s, (real time) X-ray machines were used in stores to help sell footwear. These were known as fluoroscopes. However, as the harmful effects of X-ray radiation were properly considered, they finally fell out of use. Shoe-fitting use of the device was first banned by the state of
In the typical X-ray source of less than 450 kV, X-ray photons are produced by an electron beam striking a target. The electrons that make up the beam are emitted from a heated cathode filament. The electrons are then focused and accelerated towards an angled anode target. The point where the electron beam strikes the target is called the focal spot. Most of the kinetic energy contained in the electron beam is converted to heat, but around 1% of the energy is converted into X-ray photons, the excess heat is dissipated via a heat sink. At the focal spot, X-ray photons are emitted in all directions from the target surface, the highest intensity being around 60deg to 90deg from the beam due to the angle of the anode target to the approaching X-ray photons. There is a small round window in the X-ray tube directly above the angled target. This window allows the X-ray to exit the tube with little attenuation while maintaining a vacuum seal required for the X-ray tube operation.
No comments:
Post a Comment